Sparse and Low-rank Matrix Decomposition via Alternating Direction Methods

نویسندگان

  • XIAOMING YUAN
  • JUNFENG YANG
چکیده

The problem of recovering the sparse and low-rank components of a matrix captures a broad spectrum of applications. Authors in [4] proposed the concept of ”rank-sparsity incoherence” to characterize the fundamental identifiability of the recovery, and derived practical sufficient conditions to ensure the high possibility of recovery. This exact recovery is achieved via solving a convex relaxation problem where the l1 norm and the nuclear norm are utilized for being surrogates of the sparsity and low-rank. Numerically, this convex relaxation problem was reformulated into a semi-definite programming (SDP) problem whose dimension is considerably enlarged, and this SDP reformulation was proposed to be solved by generic interior-point solvers in [4]. This paper focuses on the algorithmic improvement for the sparse and low-rank recovery. In particular, we observe that the convex relaxation problem generated by the approach of [4] is actually well-structured in both the objective function and constraint, and it fits perfectly the applicable range of the classical alternating direction method (ADM). Hence, we propose the ADM approach for accomplishing the sparse and low-rank recovery, by taking full exploitation to the high-level separable structure of the convex relaxation problem. Preliminary numerical results are reported to verify the attractive efficiency of the ADM approach for recovering sparse and low-rank components of matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse and Low-Rank Matrix Decomposition Via Alternating Direction Method

The problem of recovering sparse and low-rank components of a given matrix captures a broad spectrum of applications. However, this recovery problem is NP-hard and thus not tractable in general. Recently, it was shown in [3, 6] that this recovery problem can be well approached by solving a convex relaxation problem where the l1-norm and the nuclear norm are used to induce sparse and low-rank st...

متن کامل

Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization

The matrix separation problem aims to separate a low-rank matrix and a sparse matrix from their sum. This problem has recently attracted considerable research attention due to its wide range of potential applications. Nuclear-norm minimization models have been proposed for matrix separation and proved to yield exact separations under suitable conditions. These models, however, typically require...

متن کامل

Surveillance Video Processing Using Compressive Sensing

A compressive sensing method combined with decomposition of a matrix formed with image frames of a surveillance video into low rank and sparse matrices is proposed to segment the background and extract moving objects in a surveillance video. The video is acquired by compressive measurements, and the measurements are used to reconstruct the video by a low rank and sparse decomposition of matrix....

متن کامل

Defect detection for patterned fabric images based on GHOG and low-rank decomposition

In order to accurately detect defects in patterned fabric images, a novel detection algorithm based on Gabor-HOG (GHOG) and low-rank decomposition is proposed in this paper. Defect-free pattern fabric images have the specified direction, while defects damage their regularity of direction. Therefore, a direction-aware descriptor is designed, denoted as GHOG, a combination of Gabor and HOG, which...

متن کامل

Sparse + Low Rank Decomposition of Annihilating Filter-based Hankel Matrix for Impulse Noise Removal

Recently, so called annihilating filer-based low rank Hankel matrix (ALOHA) approach was proposed as a powerful image inpainting method. Based on the observation that smoothness or textures within an image patch corresponds to sparse spectral components in the frequency domain, ALOHA exploits the existence of annihilating filters and the associated rank-deficient Hankel matrices in the image do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009